8 research outputs found

    Detection of Separase activity using a cleavage sensor in live mouse oocytes Detection of Separase activity using a cleavage sensor in live mouse oocytes.

    Get PDF
    International audienceSeparase proteolytically removes Cohesin complexes from sister chromatid arms, which is essential for chromosome segregation. Regulation of Separase activity is essential for proper cell cycle progression and correct chromosome segregation. Onset of Separase activity has not yet been observed in live oocytes. We describe here a method for detecting Separase activity in mouse oocytes in vivo. This method utilizes a previously described cleavage sensor made up of H2B-mCherry fused with Scc1(107-268 aa)-YFP. The cleavage sensor is loaded on the chromosomes through its H2B tag, and the signal from both mCherry and YFP is visible. Upon Separase activation the Scc1 fragment is cleaved and YFP dissociates from the chromosomes. The change in the ratio between mCherry and YFP fluorescence intensity is a readout of Separase activity

    Contrôle des divisions méiotiques dans les ovocytes : un nouveau rôle pour la cycline B3

    No full text
    Meiosis is a tightly regulated process made up of two successive divisions, meiosis I and II. They must be completed in an orderly manner to obtain haploid gametes with the correct number of chromosomes. Female mammalian meiosis is an error-prone process where errors in segregation create aneuploid gametes. In addition, incidence of aneuploidy increases in correlation with age. Understanding the regulation of female mammalian meiosis is therefore essential. Meiotic cell divisions are regulated by cyclins associated to their binding catalytic partners Cdks. I investigated the role of a unique cyclin, cyclin B3, through the use of cyclin B3 KO female mice. I found that lack of cyclin B3-Cdk1 activity in KO oocytes affects APC/C activity and induces an arrest at metaphase I due to high cyclin B1 levels, high Cdk1 activity, and inactive separase. Surprisingly, cyclin B3 from other species was able to rescue mouse cyclin B3 KO oocytes. I was also able to show that cyclin B3 is able to inhibit CSF arrest. My recent data suggests that cyclin B3 KO oocytes put in place a precocious CSF arrest, leading to the metaphase I arrest observed. Hence, my PhD work has shown that cyclin B3 is essential for female meiosis I and to prevent precocious CSF arrest in meiosis I instead of meiosis II.La méiose est un processus très réglementé composé de deux divisions successives, la méiose I et II, qui doivent être complétées dans l’ordre pour obtenir des gamètes haploïdes avec le nombre correct de chromosomes. La méiose chez les femelles est un processus sujet aux erreurs, où les erreurs de ségrégation créent des gamètes aneuploïdes. De plus, l'incidence d'aneuploïdie augmente avec l'âge. Comprendre la régulation de la méiose chez les femelles mammifères est donc essentiel. Les divisions méiotiques sont régulées par les cyclines associées à leurs partenaires catalytiques, les Cdks. J'ai étudié le rôle d'une cycline unique, la cycline B3, grâce à l'utilisation de souris cycline B3 KO. J'ai trouvé que l’absence d'activité de cycline B3-Cdk1 dans les ovocytes KO affecte l'activité de l'APC/C et induit un arrêt en métaphase I en raison des taux élevés de cycline B1, de l'activité de la Cdk1 et de la séparase inactive. Étonnamment, la cycline B3 d’autres espèces a pu sauver le phénotype des ovocytes de cycline B3 KO. J'ai aussi pu montrer que la cycline B3 était capable d'inhiber l'arrêt CSF. Les données récentes suggèrent que les ovocytes KO entraînent un arrêt précoce en CSF conduisant à l’arrêt en métaphase I observé. Mon travail de thèse a donc montré que la cycline B3 est essentielle pour la méiose I chez les femelles et pour empêcher un arrêt CSF précoce en méiose I

    Cycling through mammalian meiosis: B-type Cyclins in oocytes

    No full text
    International audienceB-type cyclins in association with Cdk1 mediate key steps of mitosis and meiosis, by phosphorylating a plethora of substrates. Progression through the meiotic cell cycle requires the execution of two cell divisions named meiosis I and II without intervening S-phase, to obtain haploid gametes. These two divisions are highly asymmetric in the large oocyte. Chromosome segregation in meiosis I and sister chromatid segregation in meiosis II requires the sharp, switch-like inactivation of Cdk1 activity, which is brought about by degradation of B-type cyclins and counteracting phosphatases. Importantly and contrary to mitosis, inactivation of Cdk1 must not allow S-phase to take place at exit from meiosis I. Here, we describe recent studies on the regulation of translation and degradation of B-type cyclins in mouse oocytes, and how far their roles are redundant or specific, with a special focus on the recently discovered oocyte-specific role of cyclin B3

    Cyclin B3 promotes anaphase I onset in oocyte meiosis

    No full text
    International audienceMeiosis poses unique challenges because two rounds of chromosome segregation must be executed without intervening DNA replication. Mammalian cells express numerous temporally regulated cyclins, but how these proteins collaborate to control meiosis remains poorly understood. Here, we show that female mice genetically ablated for cyclin B3 are viable-indicating that the protein is dispensable for mitotic divisions-but are sterile. Mutant oocytes appear normal until metaphase I but then display a highly penetrant failure to transition to anaphase I. They arrest with hallmarks of defective anaphase-promoting complex/cyclosome (APC/C) activation, including no separase activity, high CDK1 activity, and high cyclin B1 and securin levels. Partial APC/C activation occurs, however, as exogenously expressed APC/C substrates can be degraded. Cyclin B3 forms active kinase complexes with CDK1, and meiotic progression requires cyclin B3-associated kinase activity. Cyclin B3 homologues from frog, zebrafish, and fruit fly rescue meiotic progression in cyclin B3-deficient mouse oocytes, indicating conservation of the biochemical properties and possibly cellular functions of this germline-critical cyclin

    Cyclin B3 implements timely vertebrate oocyte arrest for fertilization

    No full text
    Summary To ensure successful offspring ploidy, vertebrate oocytes must halt the cell cycle in meiosis II until sperm entry. Emi2 is essential to keep oocytes arrested until fertilization. Yet, how this arrest is implemented exclusively in meiosis II and not prematurely in meiosis I remained enigmatic. Using mouse and frog oocytes, we show here that cyclin B3, an understudied B- type cyclin, is essential to keep Emi2 levels low in meiosis I. Direct phosphorylation of Emi2 at an evolutionarily highly conserved site by Cdk1/cyclin B3 targets Emi2 for degradation. In contrast, Cdk1/cyclin B1 is inefficient in Emi2 phosphorylation providing a molecular explanation for the requirement of different B-type cyclins for oocyte maturation. Cyclin B3 degradation at exit from meiosis I enables Emi2 accumulation and thus, timely arrest in meiosis II. Our findings illuminate the evolutionarily conserved mechanisms controlling oocyte arrest for fertilization at the correct cell cycle stage, essential for embryo viability

    Cyclin B3 implements timely vertebrate oocyte arrest for fertilization

    No full text
    International audienceTo ensure successful offspring ploidy, vertebrate oocytes must halt the cell cycle in meiosis II until sperm entry. Emi2 is essential to keep oocytes arrested until fertilization. However, how this arrest is implemented exclusively in meiosis II and not prematurely in meiosis I has until now remained enigmatic. Using mouse and frog oocytes, we show here that cyclin B3, an understudied B-type cyclin, is essential to keep Emi2 levels low in meiosis I. Direct phosphorylation of Emi2 at an evolutionarily highly conserved site by Cdk1/cyclin B3 targets Emi2 for degradation. In contrast, Cdk1/cyclin B1 is inefficient in Emi2 phosphorylation, and this provides a molecular explanation for the requirement of different B-type cyclins for oocyte maturation. Cyclin B3 degradation at exit from meiosis I enables Emi2 accumulation and thus timely arrest in meiosis II. Our findings illuminate the evolutionarily conserved mechanisms that control oocyte arrest for fertilization at the correct cell-cycle stage, which is essential for embryo viability
    corecore